Transparent polymer solar cells employing a layered light-trapping architecture

نویسندگان

  • Rafael Betancur
  • Pablo Romero-Gomez
  • Alberto Martinez-Otero
  • Xavier Elias
  • Marc Maymó
چکیده

Organic solar cells have unique properties that make them very attractive as a renewable energy source. Of particular interest are semi-transparent cells, which have the potential to be integrated into building façades yet not completely block light. However, making organic cells transparent limits the metal electrode thickness to a few nanometres, drastically reducing its reflectivity and the device photon-harvesting capacity. Here, we propose and implement an ad hoc path for light-harvesting recovery to bring the photon-to-charge conversion up to almost 80% that of its opaque counterpart. We report semi-transparent PTB7:PC71BM cells that exhibit 30% visible light transmission and 5.6% power conversion efficiency. Non-periodic photonic crystals are used to trap near-infrared and near-ultraviolet photons. By modifying the layer structure it is possible to tune the device colour without significantly altering cell performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 1...

متن کامل

Two-dimensional high efficiency thin-film silicon solar cells with a lateral light trapping architecture

Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells ha...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Distributed Reflector Structure and Diffraction Grating Structure in the Solar Cell

Today, due to qualitative growth and scientific advances, energy, especially electricity is increasingly needed by human society. One of the almost endless and pure energy which have been paid attention over the years is the solar energy. Solar cells directly convert solar energy into electrical energy and are one of the main blocks of photovoltaic systems. Significant improvement has been made...

متن کامل

Trapping Light in Organic Plastic Solar Cells with integrated Diffraction Gratings

In this paper we investigate the potential of light trapping with diffraction gratings for organic solar cells. The architecture of the solar cell is based on conjugated polymers and a buckminsterfullerene derivative (PCBM), forming an interpenetrating donor-acceptor-network. The motivation for light trapping is the small absorptance of the photoactive polymer in the range of the solar spectrum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013